miércoles, 7 de mayo de 2014

¿QUÉ SON?


Un modelo atómico es una representación estructural de un átomo, que trata de explicar su comportamiento y propiedades. De ninguna manera debe ser interpretado como un dibujo de un átomo, sino más bien como el diagrama conceptual de su funcionamiento. A lo largo del tiempo existieron varios modelos atómicos y algunos más elaborados que otros:
  • Modelo atómico de Demócrito, el primer modelo atómico, postulado por el filósofo griego Demócrito.
  • Modelo atómico de Dalton, surgido en el contexto de la química, el primero con bases científicas.
  • Modelo atómico de Thomson, o modelo del budín, donde los electrones son como las "frutas" dentro de una "masa" positiva.
  • Modelo del átomo cúbico de Lewis, donde los electrones están dispuestos según los vértices de un cubo, que explica la teoría de la valencia.
  • Modelo atómico de Rutherford, el primero que distingue entre el núcleo central y una nube de electrones a su alrededor.
  • Modelo atómico de Bohr, un modelo cuantizado del átomo, con electrones girando en órbitas circulares.
  • Modelo atómico de Sommerfeld, una versión relativista del modelo de Rutherford-Bohr.
  • Modelo atómico de Schrödinger, un modelo cuántico no relativista donde los electrones se consideran ondas de materia existente..

lunes, 5 de mayo de 2014

MODELO ATÓMICO DE SOMMERFELD


El Modelo atómico de Sommerfeld es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913).
INFLUENCIAS DEL MODELO DE BOHR: 
El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno, sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que existía un error en el modelo. Su conclusión fue que dentro de un mismo nivel energético existían subniveles, es decir, energías ligeramente diferentes. Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.
CARACTERÍSTICAS DEL MODELO:

Órbitas elípticas en el modelo de Sommerfeld.
En 1916, Sommerfeld perfeccionó el modelo atómico de Bohr intentando paliar los dos principales defectos de éste. Para eso introdujo dos modificaciones básicas: Órbitas casi-elípticas para los electrones y velocidades relativistas. En el modelo de Bohr los electrones sólo giraban en órbitas circulares. La excentricidad de la órbita dio lugar a un nuevo número cuántico: el número cuántico azimutal, que determina la forma de los orbitales, se lo representa con la letra l y toma valores que van desde 0 hasta n-1. Las órbitas son:
·         l = 0 se denominarían posteriormente orbitales s o sharp
·         l = 1 se denominarían p o principal.
·         l = 2 se denominarían d o diffuse.
·         l = 3 se denominarían f o fundamental.
Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postuló que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo al tener este una masa varios miles de veces superior a la masa del electrón.
Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las órbitas del electrón pueden ser circulares y elípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la órbita en unidades de , determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la órbita.
RESUMEN:
En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:
1.   Los electrones se mueven alrededor del núcleo, en órbitas circulares o elípticas.
2.   A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.
3.   El electrón es una corriente eléctrica minúscula.
En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.


EL MODELO ATÓMICO DE SCHRÖDINGER

Es un modelo cuántico no relativista. Se basa en la solución de la ecuación de Schrödinger para un potencial electrostático con simetría esférica, llamado también átomo hidrogenoide. En este modelo los electrones se contemplaban originalmente como una onda estacionaria de materia cuya amplitud decaía rápidamente al sobrepasar el radio atómico.El modelo de Bohr funcionaba muy bien para el átomo de hidrógeno. En los espectros realizados para otros átomos se observaba que electrones de un mismo nivel energético tenían energías ligeramente diferentes. Esto no tenía explicación en el modelo de Bohr, y sugería que se necesitaba alguna corrección. La propuesta fue que dentro de un mismo nivel energético existían subniveles. La forma concreta en que surgieron de manera natural estos subniveles, fue incorporando órbitas elípticas y correcciones relativistas. Así, en 1916Arnold Sommerfeld modificó el modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en órbitas elípticas más complejas y calculó los efectos relativistas.
CARACTERÍSTICAS DEL MODELO: 
El modelo atómico de Schrödinger concebía originalmente los electrones como ondas de materia. Así la ecuación se interpretaba como la ecuación ondulatoria que describía la evolución en el tiempo y el espacio de dicha onda material. Más tarde Max Born propuso una interpretación probabilística de la función de onda de los electrones. Esa nueva interpretación es compatible con los electrones concebidos como partículas cuasi puntuales cuya probabilidad de presencia en una determinada región viene dada por la integral del cuadrado de la función de onda en una región. Es decir, en la interpretación posterior del modelo, éste era modelo probabilista que permitía hacer predicciones empíricas, pero en el que la posición y la cantidad de movimiento no pueden conocerse simultáneamente, por el principio de incertidumbre. Así mismo el resultado de ciertas mediciones no están determinadas por el modelo, sino sólo el conjunto de resultados posibles y su distribución de probabilidad.
ADECUACIÓN EMPIRIACAL
El modelo atómico de Schrödinger predice adecuadamente las líneas de emisión espectrales, tanto de átomos neutros como de átomos ionizados. El modelo también predice adecuadamente la modificación de los niveles energéticos cuando existe un campo magnético o eléctrico (efecto Zeeman y efecto Stark respectivamente). Además, con ciertas modificaciones semiheurísticas el modelo explica el enlace químico y la estabilidad de las moléculas. Cuando se necesita una alta precisión en los niveles energéticos puede emplearse un modelo similar al de Schrödinger, pero donde el electrón es descrito mediante la ecuación relativista de Dirac en lugar de mediante la ecuación de Schrödinger. En el modelo de Dirac, se toma en cuenta la contribución del espín del electrón.
Sin embargo, el nombre de "modelo atómico" de Schrödinger puede llevar a una confusión ya que no explica la estructura completa del átomo. El modelo de Schrödinger explica sólo la estructura electrónica del átomo y su interacción con la estructura electrónica de otros átomos, pero no explica como es el núcleo atómico ni su estabilidad.
INSUFICIENCIA  DEL MODELO:
Si bien el modelo de Schrödinger describe adecuadamente la estructura electrónica de los átomos, resulta incompleto en otros aspectos:

  1. El modelo de Schrödinger en su formulación original no tiene en cuenta el espín de los electrones, esta deficiencia es corregida por el modelo de Schrödinger-Pauli.
  2. El modelo de Schrödinger ignora los efectos relativistas de los electrones rápidos, esta deficiencia es corregida por la ecuación de Dirac que además incorpora la descripción del espín electrónico.
  3. El modelo de Schrödinger si bien predice razonablemente bien los niveles energéticos, por sí mismo no explica por qué un electrón en un estado cuántico excitado decae hacia un nivel inferior si existe alguno libre. Esto fue explicado por primera vez por la electrodinámica cuántica y es un efecto de la energía del punto cero del vacío cuántico.

MODELO ATÓMICO DE RUTHERFORD

 Es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo" muy pequeño; que concentra toda la carga eléctrica positiva y casi toda la masa del átomo.
Rutherford llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedían el paso de las partículas alfa. Sugirió un nuevo modelo en el cual el átomo poseía un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extranuclear se encuentran los electrones de carga negativa.
HISTORIA
Antes de que Rutherford propusiera su modelo atómico, los físicos aceptaban que las cargas eléctricas en el átomo tenían una distribución más o menos uniforme. Rutherford trató de ver cómo era la dispersión de las partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos resultantes de la desviación de las partículas supuestamente aportarían información sobre cómo era la distribución de carga en los átomos. Era de esperar que, si las cargas estaban distribuidas uniformemente según el modelo atómico de Thomson, la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflexiones, siguiendo una trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de las partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.
Rutherford pensó que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se suponía la existencia de fuertes concentraciones de carga positiva en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente liviana por parte de un átomo de oro más pesado, depende del "parámetro de impacto" o distancia entre la trayectoria de la partícula y el núcleo
se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico. Este hecho resultó ser la capacidad uniformable sobre la carga positiva de neutrones.
IMPORTANCIA DEL MODELO Y LIMITACIONES 
La importancia del modelo de Rutherford residió en proponer por primera vez la existencia de un núcleo en el átomo (término que, paradójicamente, no aparece en sus escritos). Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que sin ella, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya que implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.
Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:

· Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales
·  Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería el caso de los electrones orbitando alrededor del núcleo, produciría radiación electromagnética, perdiendo energía y finalmente cayendo sobre el núcleo. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden 10, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo.2 Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

MODELO ATÓMICO DE THOMSON

El modelo atómico de Thomson es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, quien descubrió el electrón1 en 1898, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un pudin de pasas.2 Postulaba que los electrones se distribuían uniformemente en el interior del átomo suspendidos en una nube de carga positiva. El átomo se consideraba como una esfera con carga positiva con electrones repartidos como pequeños gránulos. La herramienta principal con la que contó Thomson para su modelo atómico fue la electricidad.

Modelo atómico de Thomson
Descubrimiento del electrón (descubierto en el año 1897; en 1898 Thomson propuso un modelo atómico, que tomaba en cuenta la existencia de dicha partícula subatómica.
Thomson suponía que los electrones se distribuía de una forma uniforme alrededor del átomo, conocido este modelo como Pastel de pasas, es la teoría de estructura atómica, Thomson  descubre el electrón antes que se descubrirse el protón  y el neutrón..
Si observamos este modelo, veremos que el átomo se compone por electrones de carga negativa  en el átomo positivo, tal se aprecia en el modelo de pasas de budín.
Pensaba que los electrones, distribuidos uniformemente alrededor del átomo, en distintas ocasiones, en vez de una sopa de las cargas positivas, se postulaba con una nube de carga positiva, en 1906 Thomson fue premiado con el novel de física por este descubrimiento.
Si pensamos que el átomo no deja de ser un sistema material, con una cierta energía interna, es por eso que esta energía provoca un grado de vibración de los electrones contenidos que contiene su estructura atómica, si se enfoca desde este punto de vista el modelo atómico de Thomson se puede afirmar que es muy dinámico por consecuencia de la gran movilidad de los electrones en el “seno” de la mencionada estructura.
Para lograr una interpretación del modelo atómico desde un ángulo microscópico, entonces se puede definir como una estructura estática, ya que los mismos se encuentran atrapados dentro del “seno” de la masa que define la carga positiva del átomo.
Veamos el modelo de una forma simple, el modelo de Thomson era parecido a un pastel de Frutas: los electrones estaban incrustados en una masa esférica de carga positiva,
La carga negativa del electrón era la misma que la carga positiva de la esfera, es por esto que se deduce que el átomo era neutro,
Thomson: también explicó  la forma de los iones, tanto positivos como negativos
Thomson y su experimento: JJ Thomson, (en 1897), a mitad de un experimento midió la proporción que existe entre la carga y la masa de una corriente de electrones, usando un tubo de rayos catódicos del cual obtiene un valor, este valor es de 1.76x 108 Coulombs

En 1906 Thomson demuestra que el hidrógeno tiene un electrón, esto permite diversas teorías

Primer experimento de Thomson.

Thomson investigó sí podrían ser separadas las cargas negativas de los rayos catódicos y utiliza un medio el del magnetismo.
Para este experimento construyo un tubo de rayos catódicos el cual al final del tubo termina en dos cilindros con ranuras, las ranuras fueron conectadas a su vez a un electrómetro.
Con este método Thomson descubre que cuando los rayos son desviados magnéticamente de tal forma que no puedan entrar en las hendiduras, el electrómetro marca al registrar poca carga.
Esto llevo a Thomson a la conclusión que la carga negativa es inseparable de los rayos

Segundo experimento de Thomson.
Para este segundo experimento,  JJ Thomson construye un tubo de rayos catódicos, logrando un vacío casi perfecto, en uno de sus extremos lo recubre con pintura fosforescente.
La intención del este experimento era investigar si estos rayos podían ser desviados con un campo eléctrico, se conocía que en anteriores experimentos no se habían observado este fenómeno (esto es muy característico de las partículas con carga).
Con la creación de este tubo en el que en uno de sus extremos estaba recubierto con pintura fosforescente, Thomson descubre que muchos rayos si se podían doblar con la influencia de un campo magnetizado.

Tercer experimento de Thomson.
Para el tercer experimento, Thomson fundamento la relación que hay entre la masa de los rayos catódicos y la carga, para esto mide la cantidad que se desvía por un campo magnético y cuanta cantidad de carga de energía contenida.
La relación masa/carga que encuentra es de un millar de veces superior a la que contiene el ión de Hidrógeno, esto indica que bien las partículas deben ser más livianas o con mucha más carga.
Aquí Thomson toma una posición audaz: Thomson, a los rayos catódicos que estaban cargados por partículas les llamó “corpúsculos” dichos corpúsculos se originaban dentro de los átomos de los electrodos, a lo que esto significaba, que los átomos deben ser divisibles, imagina “un mar” totalmente repleto de cargas positivas en estos corpúsculos en el átomo, es por esto que se le llama y conoce con el nombre de budín de pasas al modelo de Thomson.
El premio nobel de física lo obtiene en 1906, gracias al trabajo que realizo sobre la conducción de la electricidad a través de los gases.
La forma de su explicación de que el átomo está formado por un núcleo unido y compacto y que en su exterior la denomina como corteza, deja mucha puertas abiertas tanto para Ernest Rutherford o Niels Bohr, quienes continúan con esta investigación dando luz y planteando otras teorías para los átomos y las partes diferenciadas

Postulados de Thomson

(1.856-1940) Joseph Thomson
Con las informaciones de las que se disponía en esa época, presento algunas hipótesis entre 1898 y 1904 en un intento de justificar dos hechos relativos.
a)  Que  la  materia es eléctricamente neutra, esto permitiría pensar que aparte de electrones, es posible que haya partículas con cargas positivas.
b). Es posible extraer electrones de los átomos, pero no del mismo modo las cargas positivas.
Propuso un modelo para en átomo donde la mayoría de la masa asociada con la carga positiva ( Si al tener poca masa del electrón al compararla con la de los átomos) y si suponía que un cierto número de electrones de forma distribuida uniformemente dentro una maza con carga positiva, de aquí viene la comparación siguiente ( “una especie de paste o calabaza en la que los electrones estuviesen incrustados como si fueran trocitos de fruta o pepitas”).
En realidad podemos afirmar que este fue el primer modelo realmente atómico, con referencia a la constitución de los átomos, aunque muy limitado, y esto fue sustituido rápidamente por otros.
Su trabajo consistía en una esfera uniforme de materia cargada positivamente en las que se podía hallar incrustados electrones de modo parecido a la disposición de las semillas de sandía.
Este simple modelo explica de echo que la materia fuese eléctricamente neutra, pues los átomos de Thomson la carga positiva era neutra por la negatividad.
También se podía decir que los electrones podrían ser arrancados de la esfera si la energía en juego era suficientemente importante como sucedía en los tubos de descarga.
En 1897 demuestra que los rayos se podían desviar en un campo eléctrico y estos eran atraídos por el polo positivo, esto probaba que estas  eran cargas eléctricas negativas
Lo explico de otra forma veamos lo siguiente:
Calcula la relación entre la carga y la masa de esas partículas.
Para lograr demostrar este cálculo realizó un experimento: Hizo pasar un haz de rayos catódicos por un campo magnético y uno eléctrico.
El segundo paso consistía en eliminar el campo magnético y medir la desviación sufrida por el haz debido al campo eléctrico. Resulta que los rayos catódicos tienen una relación carga a masa más de 1.000 veces superior a la de cualquier ion.
Esta constatación llevó a Thomson a suponer que las partículas que forman los rayos catódicos no eran átomos cargados sino fragmentos de átomos, es decir, partículas subatómicas a las que llamó electrones.
Las placas se colocan dentro de un tubo de vidrio cerrado, al que se le extrae el aire, y se introduce un gas a presión reducida.

MODELO ATÓMICO DE BOHR

 Explica cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos. Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905. Bohr se basó en el átomo de hidrógeno para hacer el modelo que lleva su nombre.
En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante.

Bohr supuso además que el momento angular de cada electrón estaba Cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

 POSTULADOS DE BOHR:

PRIMER POSTULADO: Los electrones describen órbitas circulares en torno al núcleo del átomo sin radiar energía, ya que una carga con un movimiento acelerado debe emitir energía en forma de radiación.
Para conseguir el equilibrio en la órbita circular, las dos fuerzas que siente el electrón: fuerza columbiana (Atrae) y la fuerza centrifuga (Repele); estas deben tener la misma magnitud en toda la orbita.

SEGUNDO POSTULADO: No toda órbita para electrón está permitida, tan solo se puede encontrar en órbitas cuyo radio cumpla que el momento angular, L, del electrón sea un múltiplo entero de


TERCER POSTULADO: El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia de energía entre ambos niveles. Este fotón, según la ley de Planck tiene una energía:



MODELO DEL ÁTOMO CÚBICO

El MODELO DEL ÁTOMO CÚBICO fue un modelo atómico temprano, en el que los electrones del átomo estaban posicionados siguiendo los ocho vértices de un cubo. Esta teoría fue desarrollada en 1902 por Gilbert N. Lewis y publicada en 1916 en el artículo «The Atom and the Molecule» (El átomo y la molécula); sirvió para dar cuenta del fenómeno de la valencia. Se basa en la regla de Abegg. Fue desarrollada posteriormente por Irving Langmuir en 1919, como el átomo del octeto cúbico. La figura a continuación muestra las estructuras de los elementos de la segunda fila de la tabla periódica.
Aunque el modelo del átomo cúbico fue abandonado pronto en favor del modelo mecánico cuántico basado en la ecuación de Schrödinger, y es en consecuencia sólo de interés histórico, representó un paso importante hacia el entendimiento del enlace químico. El artículo de 1916 de Lewis también introdujo el concepto del par de electrones en el enlace covalente, la regla del octeto, y la ahora llamada estructura de Lewis.
Enlace del modelo atómico Cubito: Los enlaces covalentes se forman cuando dos átomos comparten una arista, como en la estructura C que está a continuación. Dicha estructura resulta en la compartición de dos electrones. Los enlaces iónicos se forman por la transferencia de un electrón de un cubo al otro, sin compartir una ariste (A). Lewis también postuló un estado intermedio, B, donde sólo se comparte una esquina.
Los enlaces dobles se forman por la compartición de una cara entre dos átomos cúbicos. Esto resulta en la compartición de cuatro electrones
Los enlaces triples no podrían ser interpretados por el modelo del átomo cúbico, porque no hay forma de tener dos cubos compartiendo seis esquinas. Lewis sugirió que los pares de electrones en los enlaces atómicos tienen una atracción especial, que resulta en una estructura tetraédrica, como muestra la figura a continuación (la nueva ubicación de los electrones está representada por círculos punteados en la mitad de las aristas gruesas). Esto permite la formación de un enlace simple por la compartición de una esquina, un enlace doble por la compartición de una arista, y un enlace triple por compartición de una cara. También explica la libre rotación alrededor de un enlace simple y la geometría tetraédrica del metano. Es remarcable que pueda decirse que había un grano de verdad en esta idea; posteriormente se vio que el principio de exclusión de Pauli resulta en un "hueco de Fermi" de repulsión disminuida entre un par de electrones con espín opuesto en el mismo orbital.